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Abstract. A self-consistent energy-functional perturbation theory is presented for electron 
gases confined in a quantum well wire. An analytical expression of the dynamical dielectric 
function is obtained both for the intra-subband and the inter-subband modes. Different from 
the quasi-one-dimensional wire, the inter-subband transition in this system can be taken into 
consideration. Plasmon excitations of inter-subband modes are discussed. 

1. Introduction 

The development of molecular-beam epitaxy as a technique for the growth of high- 
quality semiconductor crystals has given a new dimension to the study of the properties 
of narrow-channel microstructures in experiment. Quantum well wire (Qww) with cross 
sections as small as 20 X 10 nm-* has been fabricated (Petroff et a1 1982). Theoretical 
attention in recent literature has focused on plasmon excitations in quasi-one-dimen- 
sional (QID) quantum well wire (Das Sarma and Lai 1985) and transport properties of 
electron gases in Q1D systems (Arora 1981, Lee 1984, Peeters et a1 1986, Peeters 1988, 
Chui 1986). The crossover of dimensionality from ID to 3~ as the wire radius increases 
has been studied (Bryant 1984). A special kind of QWW with electrons confined in a 
cylindrical potential well of inside radius a,  and outside radius a2 (a2 > a,) has also been 
proposed (Chen 1987, Zhu 1988). The propagating modes guided by a cylindrical 
quantum well (CQW) and optical absorption spectrum due to the inter-subband transition 
have been investigated (Huang et a1 1988, Huang 1990). More recent works (Que and 
Kirezenow 1988,1989, Cui 1989) on QWW include the studies of plasmon excitations in 
a multiwire superlattice with weak tunnelling between wires. These narrow-channel 
semiconductor microstructrures have been claimed to provide exciting new tech- 
nological possibilities since the impurity content and distribution in these Q1D semi- 
conductor structures can be selectively controlled and can produce enhanced mobility 
which may even exceed the very high mobility values achieved in modulation doped 2D 
GaAs-AlGaAs heterojunction electron transistors. In order to study the propagating 
waves or other optical properties of electron gases in a QWW, it is necessary to investigate 
the dielectric function for this system. Although the dielectric properties for electron 
gases in a QWW have already been studied for intra-subband modes, to the best of our 
knowledge, the inter-subband modes have not yet been studied. 

Using the self-consistent energy-functional perturbation theory developed for the 
CQW system, we study the dielectric properties of electron gases confined in a QWW. In 

0953-8984/90/245327 + 07 $03.50 @ 1990 IOP Publishing Ltd 5327 



5328 F Y Huang 

contrast to the Q1D system, in our calculations the inter-subband transition between 
different subbands can be taken into consideration. The plasmon excitation of inter- 
subband modes in a QWW is discussed. In section 2 ,  we solve the eigenvalue problem of 
the electronic state in a QWW with a finite potential depth. In section 3, we obtain the 
dielectric response function of the electron gases. Some numerical results and discussions 
are presented in section 4. 

2. Evaluation of subband energies 

In a typical QWW system, electrons are confined in a cylindrical potential well of GaAs 
surrounded by an AlGaAs barrier with a potential well of radius a. Electrons are free 
to move along the axis direction. The motion in the plane perpendicular to the axis is 
quantised and a sequence of electric subbands is formed. The energy spectrum is E = 
E ,  + h2kt/2m*. It is similar to that of electrons confined to a quasi-2~ layer with quantised 
motion perpendicularto the plane. Whereasthe bottomofthe vthsubbandisdetermined 
by both the radial and the angular quantum numbers E ,  = E(m, n ) ,  which would display 
remarkable features different from those for a quasi-zD system. Since the dielectric 
properties of the electron gas are strongly dependent on the subband energies and 
wavefunctions of electronic state, in this section, we solve the eigenvalue problem in a 
QWW with a finite potential depth. 

In cylindrical coordinates, the potential of a QWW takes the simple form 

For this potential the Schrodinger equation is easily solved, giving the radial part of the 
wavefunction both interior and exterior to the QWW 

Where J ,  is the Bessel function of mth order, m = 0, 21, +2, . . . , K ,  is the modified 
Bessel function and 52 is a normalisation factor. The eigenvalues are 

E ,  = h2k$,/2m*. (3) 
The constant A ,  k,, and K,, are determined by the boundary conditions at r = a ,  and 
the equation 

k,, + K, ,  = 2m*V0/h2. (4) 
For the lowest two eigenstates (m = 0 and m = l), the boundary conditions give the 
following relations 

(ka)J1 (ka)lJo(ka) = ( K a ) K ,  ( K a ) / K o ( K a  1 
(ka)Jo(ka)/J, (ka) = - (Ka)K,(Ka)/K,  ( K a ) .  

( 5a )  

(5b) 
Equations (4)) and (5a)  give the ground state eigenvalue and equations (4) and (5b) give 
the first excited state eigenvalue. For a finite potential Vo,  the eigenvalues can be solved 
numerically. In figure 1, we calculate the eigenvalue ka as a function of the potential 
depth V o  with a fixed QWW radius a. It can be seen that as Vo increases, both the 
eigenvalue of the ground state (m  = 0) and the first excited state (m  = 1) increase and 
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state (m  = 0) and the first excited state 
(m = 1) in a quantum well wire as a func- 
tion of the potential depth Vo (in units of 
100h2/2m*a2). ka decreases to zero as the 
potential goes to zero for the m = 0 mode, 
while for the m = 1 mode ka decreases to 

go to the first zero-points of the Bessel function J o  and J1, respectively. Numerical 
calculations also show that the first excited state becomes weakly-bounded when the 
potential Vois very small (or equivalently, for a fixed Vo, the radius a is very small) which 
gives a critical radius rc.  Below this radius, the first excited state does not exist, there is 
only the ground state bounded in the QWW, and the system would behave in a ID fashion. 
The critical radius will be discussed later. 

There is no known way to solve equations (4) and ( 5 )  analytically, but for two limiting 
cases the results can be obtained more explicitly. 

(i) Vo + h2k2,,/2m*. In this case the conditionJ,( ka) = 0 applies approximately and 
the zeros of J ,  give the energy eigenvalues 

h2X2,, 
E,, =- 

2m*a2' 
Where x,, is the nth zero of the mth order Bessel function. The corresponding eigen- 
functions are 

(ii) QWW with a very small radius. In this case the subband energies are pushed up 
towards the top of the potential well, and the infinite potential approximation is no 
longer valid. For small radius wires, the value of k,, can be obtained by expanding J, 
and K, about the origin. The small argument expansions for the first two J ,  and K, are 
given by 

Jo(x) = 1 - (X/2)* Jl(X) = x /2  (sa) 

K,(x) = -1n- K,(x) = -. (8b) 
X 1 
2 X 

Applying the boundary conditions at r = a form = 0 mode, we get 
We use these to investigate the ground as well as the first excited electronic states. 

4 - l n (~a /2 )  1, k a =  [ (9) 

From equations (4) and (9), we can see that there is always a bound state for any values 
of Vo and quantum wire radius a. 
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For the first excited state, we find that, as the potential Vo or equivalently the 
radiusa becomes smaller, the eigenstate becomes weakly-bounded 4 Vo)  and finally 
vanishes as the potential is close to zero. As estimated from the small argument expan- 
sion, the critical condition is given by 

Voa2 > 2h2/m*. (10) 
For a fixed value of Vo,  we obtain a critical radius rc,  rc= (2h2/m*V0)’/2, below r, the first 
excited state no longer exists. The critical radius is demonstrated numerically in the 
calculations of the eigenvalue for m = 1 in figure 1. Calculations are carried out for a 
fixed value of radius a. For potential Vo (in units of ti2/2m*a2) smaller than 6 the m = 1 
state is very close to Vo,  and the m = 1 state vanishes as V o  becomes smaller than 5 ,  
which is consistent with the theoretical estimate discussed above, i.e. that the first excited 
state does not exist when the potential Vo is smaller than 4. 

3. Dynamic response theory 

Let us establish the dynamic response theory of an electron gas in a QWW in the absence 
of an external magnetic field. The effective-mass Hamiltonian describing an electron in 
the presence of the effective potential V(r)  can be written as 

H =  -(h2/2m*)[d2/dz2 + a2/dr2 + (l /rd/dr) + (l/r2 d 2 / d q 2 )  + V ( r ) ] .  (11) 

(12) 

Here ( r ,  q ,  z) are cylindrical coordinates. The electron wave functions are given by 

Iv) = /m,  n ,  k )  = exp(ik,z + imq)Em,,(r) 
where Emn is the eigenfunction for motion in the effective potential V(r) of the QWW. 

An external perturbation of the form 

q e x t ( r ,  q ,  z ;  t )  = qext(q, Am, 0; r )  exp(iwt - iqz - iAmq) (13) 
will induce a perturbed electron density, which in turn induces perturbed Hartree and 
exchange-correlation potentials. The total perturbation 

q = q e x t  + q H  + q”‘ (14) 
is also of the form of (13). Following the Ehrenrich-Cohen self-consistent-field pre- 
scription (Ehrenreich and Cohen 1959), the linear-response approximation leads to the 
induced electron density 

whereHi, = - e q .  In the limit that onlythelowest subbandisoccupied (electronquantum 
limit) the Fermi-Dirac distribution function at zero temperature will be 

f ~ ( ~ v )  = 6 m O 6 a l .  (16) 
If we only consider the angular subband transitions, after some algebraic deduction 
equation (15) becomes 

6n(q, Am, w, = nAm (q?  w> (Ol I A m >  E O ( r ) E A m ( r )  (17) 

Re  n A m ( q ,  w) = (m*/nti2q) ln i(02 - w2)/ (w2 - w:)i (18a) 

with nAm the irreducible polarisation insertion given by 

and 
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(18b) 
fi4 

o? = - lqf * [ ( q / 2 )  -t (m* /h2q)EAm11*  m* 

The imaginary part of nAm is not zero only for w with o- < o < U,, 

Im n A m ( q ,  o) = -(e2m*/nh2q3) (19) 
where qf is the Fermi wavevector, and (AmlH,lO) is defined as 

(AmlH110) = I g O ( r ) g A m ( r ) ( - e q )  due  (20) 

The perturbed Hartree potential can be obtained from the Poisson's equation 

(21) qH = - - e 1 GAm(r, r ' )  dn(q, dm, o, r ' )  dr '  
E ,  

and the Green's function 

G A m ( r ?  r ' )  = 4n K A m ( q r > ) 1 A m ( q r 2 ) *  (22) 
The matrix elements for Hartree potential between the initial state and the final state 
are 

The dielectric response function is defined as 

E = (q?""')/(q). (26) 

€ A m ( q ,  = - r ] A m ( q ,  (27) 

From the expressions above 

If the QWW has an infinite potential depth, the eigen energies and the wavefunctions of 
the electronic state needed for the calculations are given by 

E~ = h2x&/2m*a2 = h 2 ~ : 1 / 2 m * a 2  (28) 

E o  = J O ( X l O ( + ) )  E1 = Jl(xll(r/a>). (29) 

4. Results and discussion 

In the case of intra-subband transition, A m  = 0 and = 0. The result of (18) is simply 
the Kramers-Heisenberg electronic polarisability for the ID electron gases within the 
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Figure 2. The poles of the inverse of the dielectric function, w, (in unitsof the Fermi energy), 
as a function of wavevector q (in units of the Fermi wavevector) for a quantum well wire with 
only the first subband occupied. (a )  Intra-subband mode, = 0. In the long wavelength 
limit, w, +. 0 as q -+ 0. ( b )  Inter-subband modes with three different values of the potential 
depth Vo = 10,50, and =. As Vo decreases the curve becomes lower in energy with a shape 
similar to that of the intra-subband mode. The potential V ,  is in units of fiz/2m*a2. 

self-consistent-field method (Friesen and Bergersen 1980). The inter-subband transition 
can be studied when Am # 0. The Fermi wavevector in this system is given by 

N ,  = ( l / n a ) [ q F a  + 2(q$a2 - + . + 2(qga2 - x5,,)’”] (30) 

with xn,, < q$. The coefficient 2 is due to the degeneracy of the angular momentum if 
m # 0. Equation (30) can be solved self-consistently for a given number density of 
electrons per unit length N,. The condition that there is only the lowest subband occupied 
is usually of special interests for discussion. The crossover of dimensionality occurs when 
more than one-subband is occupied. This corresponds to a larger number density of 
electrons, or equivalently, a larger radius of the wire. 

The inverse of the dielectric function l / ~ ~ , ( q ,  w )  has poles at w, given by (18b).  In 
the long wavelength limit, for intra-subband modes = 0, so w, + 0 as q + 0, while 
hw, = for inter-subband modes as q = 0. This result is similar to that in an array of 
Q i D  quantum wire structures with the interaction between the wires being taken into 
consideration as discussed by Williams and Bloch (1974). The poles of the inverse of the 
dielectric function, w,, are plotted for both intra-subband and inter-subband modes in 
figure 2(a )  and 2 ( b ) ,  respectively. The numerical calculations are carried out for a QWW 
structure with only the first subband occupied, and N,  = lo6 cm-’. For the inter-subband 
mode, it is worth noting some interesting characteristics as shown in figure 2(b ) .  As 
the potential Vo decreases, the subband energy difference between m = 0 and m = 1 
becomes smaller, and the w L  curves (in units of 100h2/2m*a2) as a function of q become 
lower in energy. In the limiting case where the first excited state is weakly-bounded, the 
curve is similar to that of the intra-subband mode. 

The exchange-correlation potential qxc is taken to be a local function of the density 
by following the treatment of Kohn and Sham (Kohn and Sham 1965, Sham and Kohn 
1966), i.e., qxc is given by taking a functional derivative of the exchange-correlation 
part of the ground-state energy with respect to the number density of electrons. The 
functional form of the ground-state energy is replaced by a product of the density and 



Dielectric properties of electron gases in a quantum well wire 5333 

the exchange-correlation energy per electron of a uniform electron gas with density 6n. 
In this approximation, qxc becomes the exchange-correlation part of the chemical 
potential of the uniform electron gas. We only consider the effect of this part qualitatively 
in this paper. 

Most of the important properties of electron gases, which responds to an external 
electric field, will be reflected by the dynamical dielectric function. Excitations of the 
electron gas are determined by the longitudinal dielectric function. The light absorption 
due to the electron excitations is relevant to the real part of the conductivity which is 
described by the Kubo formula, and proportional to the imaginary part of the inverse 
longitudinal dielectric function. The condition for the collective excitation (plasmon) 
of the system is that the self-sustaining oscillations in the electron density occur. As is 
well known, the dispersion relation of the collective modes is given by eAm(q, w )  = 0, 
from equation (27) 

The plasmon modes are free from damping since Im E = 0 in this frequency region. For 
a long wavelength limit, the intra-subband transition gives the phonon-like plasmon 
excitation with up’ 0 as q = 0. And the inter-subband transition gives the photon-like 
modes with wp # 0 as q = 0. 

When the propagating modes in a QWW waveguide are investigated, for example, as 
an application to the laser device with a QWW structure, it is necessary to know the 
dielectric properties of the electron gas in this system, since the response of the electron 
gas to an external electric field will affect the propagating mode. The frequency of the 
guided wave must be chosen so as to be out of the non-zero region of the imaginary part 
of the dielectric function to avoid the absorption by the electron gases. 
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